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Iminosugar thioglycosides as glycosyl donors:
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Abstract

The iminosugar thioglycosides are used as glycosyl donors in glycosidation reactions. Thereby, iminosugar glycosides and disaccha-
ride analogues with an iminosugar moiety are prepared. The yields are high and the method is stereoselective.
� 2007 Elsevier Ltd. All rights reserved.
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The iminocyclitols, also known as iminosugars, are a
type of natural and synthetic sugar analog in which the
endocyclic oxygen atom has been substituted by a nitrogen
atom. These compounds are glycosidase and glycosyltrans-
ferase inhibitors, and consequently they can be useful in the
treatment of metabolic disorders and inflammatory pro-
cesses.1 In the last 15 years, much effort has been directed
at the synthesis of five-, six- and seven-membered imino-
cyclitols, that is, ‘monosaccharide–iminosugars’.2,3 How-
ever, data on disaccharide derivatives containing one or
two iminosugar moieties are scarce. Several C-linked
imino-disaccharide derivatives with an iminosugar moiety
have been prepared,4 and related compounds with an
amino group5,6 or sulfur atom as inter-glycosidic group
have also been described.5 The synthesis of 1,6-imino-di-
and imino-tri-saccharide derivatives, through glycosidation
of nojirimycin derivatives with catalytic amounts of
TMSOTf, has also been reported.7

The thioglycosides, a type of glycoside in which the ano-
meric carbon atom has been substituted by a sulfur atom,
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have been widely used as glycosyl donors in glycosidation
reactions, to prepare oligosaccharides.8 The thioglycosides
have also been used as chiral inductors in enzymatic syn-
thesis9 and have been tested as antithrombotic agents.10

Recently, we have reported the stereoselective preparation
of iminosugar thioglycosides11 starting from anhydro-
iminosugar derivatives.

In this Letter, we report on the use of the iminosugar
ethyl thioglycoside 3 (Scheme 1) as glycosyl donor in
glycosidation reactions. The glycosyl acceptors were simple
alcohols and partially protected sugar derivatives with a
free hydroxyl group at position 6 or position 3.

In an earlier paper,12 we have reported the glycosidation
of methanol using an imino-anhydroglucose derivative,
related to 1, as glycosyl donor, but the yield was low and
no other alcohol was used. We have also carried out the
reaction of the anhydroiminoribose11 derivative 1 with dif-
ferent alcohols to obtain compounds 2; however, the reac-
tion was not possible when benzyl and cyclohexyl alcohols
were used as glycosyl acceptors.13

Compound 1 was transformed11 into the ethyl thioglyco-
side 3, which by reaction with benzyl bromide produced the
5-O-benzyl derivative 4, suitable for use as glycosyl donor
in glycosidation reactions.

mailto:jfuentes@us.es


N

CO2Et

CO2Et

O

O
O

N

BnO
O

O

OR

1 2

CO2Et

CO2Et

i
ii

iii

N

HO
O

O

SEt

3

CO2Et

CO2Et

iv N

BnO
O

O

SEt

4

CO2Et

CO2Et
N

BnO
O

O

OR

5-9

CO2Et

CO2Et

v

5

BnR

6 7 8 9

O

O
O

O

O O

BnO
OBn

OBn

OMe
O

OBn

OMeO

OPh

Scheme 1. Reagents and conditions: (i) BF3�OEt2; (ii) ROH, 0 �C, 45 min;
(iii) PTSA/DMF, EtSH, 0 �C, 45 min; (iv) DMF/NaH, BnBr; (v)
DMTST, MeCN, ROH, �20 �C.
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The reaction of 4 with benzyl and cyclohexyl alcohol in
acetonitrile using dimethyl(methylthio)sulfonium triflate
(DMTST) as promoter, at �20 �C for 2 h, produced the
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Fig. 1. NOE experiments on 6.

Table 1
Glycosidations of 10–12 with 4

Acceptor Product Solvent Promotor (equiv

10 7 DMF TFOMe (5.0)
Ether TfOMe (5.0)
Ether DMTST (3.0)
Dichloromethane DMTST (3.0)
Acetonitrile DMTST (2.0)

Acetonitrile PhSeTfOMe (2.0

11 8 Acetonitrile DMTST (2.0)

Dichloromethane DMTST (3.0)
Acetonitrile PhSeTfOMe (1.5
Toluene PhSeTfOMe (1.5

12 9 Acetonitrile DMTST (2.0)

1,2-Dichloroethane PhSeTfOMe (2.0
Acetonitrile PhSeTfOMe (2.0
iminosugar glycosides 5 and 614 in 88% and 87% yield,
respectively, and as a single diastereoisomer each. The
pseudoanomeric configuration (configuration of C-2, using
the number of piperidine ring) was established through
NOE experiments and molecular modelling calculations.
Thus, a NOESY experiment performed on 6 showed the
results indicated in Figure 1. The molecular model of 6

obtained by energy minimization using a force field based
approach15 yielded theoretical 3JH,H couplings (J2,3 = 1.2,
J3,4 = 8.5, J4,5 = 2.7, J5,6a = 4.9, J5,6b = 10.1) in very good
agreement with the experimental data,14 and proton–pro-
ton distances that were in very good agreement with the
whole set of NOE experimental observations. Particularly
important was the detection of a weak NOE between H-2
and the endo methyl group (Mea) (4.5 A) and between
H-5 and a CH2 of the cyclohexyl group (3.7 A) which are
exclusive NOEs crucial to demonstrate the proposed S con-
figuration for C-2.

To study the use of 4 as glycosyl donor, the acceptor
being a sugar derivative, the partially protected monosac-
charide derivatives with the CH2OH group free, 10 and
11, and the derivative with the 3-OH group free, 12, were
chosen.16
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The glycosidation reactions between the iminoglycosyl

donor 4 and acceptors 10–12 were carried out (Table 1)
in different solvents, under different conditions, and using
methyl triflate,17 DMTST18 and methyl benzene selenyl tri-
flate19 (PhSeTfOMe) as promoter. In every case, the corre-
sponding disaccharide derivative with iminosugar moieties
7–9 (Scheme 1) was obtained only as the b-anomer.20 The
yields were higher for the glycosidations on primary posi-
tions (10, 11) than for the glycosidation on a secondary
) Temperature (�C) Reaction time (h) Yield (%)

rt 48.0 23
rt 24.0 30
�40 3.0 65
�40 3.0 30
�20 2.0 80

) �10 2.0 45

�20 2.0 60

�20 1.0 50
) �30 24.0 32
) 0 2.0 42

0 2.0 45

) 0 3.0 Decompose
) 0 2.0 44
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position (12). The best yields were obtained using aceto-
nitrile as solvent, DMTST as promoter, reaction time of
2 h and a temperature of �20 �C (0 �C for 12).

The vicinal coupling constants for the iminosugar ring
of the iminodisaccharides 7–9 had similar values to that
for 6, which is indicative of b-configuration for the pseudo-
anomeric carbon (C-2 in the piperidine numbering).

In conclusion, glycosidation using iminosugar thio-
glycosides as glycosyl donors is a highly stereoselective
method to prepare disaccharide analogs with an iminosugar
moiety. The method has been used with partially protected
sugars with one free hydroxyl group at position 6 or 3, and
with simple alcohols as glycosyl acceptors. The scope and
limitations of this method are currently under study in
our laboratory.
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